
Open Research Online
The Open University’s repository of research publications
and other research outputs

Security Responses in Software Development
Journal Item
How to cite:

Lopez, Tamara; Sharp, Helen; Thein, Tun; Bandara, Arosha; Levine, Mark and Nuseibeh, Bashar (2022).
Security Responses in Software Development. ACM Transactions on Software Engineering and Methodology (Early
Access).

For guidance on citations see FAQs.

c© 2022 Association for Computing Machinery

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/3563211

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.1145/3563211
http://oro.open.ac.uk/policies.html

Security Responses in Software Development

TAMARA LOPEZ, School of Computing and Communications, The Open University, UK

HELEN SHARP, School of Computing and Communications, The Open University, UK

THEIN TUN, School of Computing and Communications, The Open University, UK

AROSHA BANDARA, School of Computing and Communications, The Open University, UK

MARK LEVINE, Department of Psychology, University of Lancaster, UK

BASHAR NUSEIBEH, School of Computing and Communications, The Open University, UK, Lero-The

Irish Software Research Centre, Republic of Ireland

The pressure on software developers to produce secure software has never been greater. But what does security
look like in environments that don’t produce security-critical software? In answer to this question, this multi-sited
ethnographic study characterises security episodes and identifies five typical behaviors in software development. Using
theory drawn from information security and motivation research in software engineering, this paper characterizes
key ways in which individual developers form security responses to meet the demands of particular circumstances,
providing a framework managers and teams can use to recognize, understand and alter security activity in their
environments.

CCS Concepts: • Security and privacy → Human and societal aspects of security and privacy; • Software and its
engineering; • Human-centered computing → Empirical studies in collaborative and social computing;

Additional Key Words and Phrases: Security, Developers, Software engineering

1 INTRODUCTION

Software developers — whether programmers, testers, designers, or product managers — typically make
hundreds of decisions every day. Very few of those decisions have obvious or direct security implications.
And yet, the pressure on developers to produce secure software has never been greater as the potential
personal, reputational, and monetary costs of security breaches are high [12]. To address the need for security
within code, there is a growing number of cybersecurity tools, guidance, training materials, and case studies.
Unfortunately, the number of breaches seems to be undiminished. Analysis of the top 5000 websites in
2018 highlighted that 8%-21% of them were susceptible to attack through different types of known software
vulnerabilities [64]. Entries in the National Cyber Awareness System bulletins [15] regularly include issues
that feature on the most recent Open Web Application Security Project (OWASP) top 10 list [69], such as
those that involve structured query language (SQL) injection.

The continued prevalence of vulnerabilities in code raises questions about the role developers play in
keeping software secure. Existing work examining security practices has focused on the issue of usability for

Authors’ addresses: Tamara Lopez, School of Computing and Communications, The Open University, Milton Keynes, UK,
tamara.lopez@open.ac.uk; Helen Sharp, School of Computing and Communications, The Open University, Milton Keynes,
UK, helen.sharp@open.ac.uk; Thein Tun, School of Computing and Communications, The Open University, Milton Keynes,
UK, thein.tun@open.ac.uk; Arosha Bandara, School of Computing and Communications, The Open University, Milton
Keynes, UK, arosha.bandara@open.ac.uk; Mark Levine, Department of Psychology, University of Lancaster, Lancaster, UK,
mark.levine@lancaster.ac.uk; Bashar Nuseibeh, School of Computing and Communications, The Open University, Milton
Keynes, UK,, Lero-The Irish Software Research Centre, Republic of Ireland, bashar.nuseibeh@open.ac.uk.

1

2 Lopez, et al.

end users [3] and for developers [27, 39], while other research has focused on identifying the psychological and
cognitive factors that lead to security vulnerabilities in code [48]. There is broad agreement in the research
community that developers need support in writing secure code [1], and researchers are exploring ways to
provide help, for example by raising awareness with software developers about security issues [46, 71], or
improving engagement by bringing security and engineering teams together [44].

In a similar vein, this research is developer-centred, examining in more detail the practices of software
engineers who are not security specialists, but are tasked with building systems that must be secure. The
focus is to understand in more depth how individual developers prioritise security, communicate about
security issues within their teams, and the ways in which the security goals of companies and clients influence
the tasks undertaken by developers in daily work [54]. This study aims to provide insight into the social and
human aspects of security in software development, asking:

∙ RQ1. Where can security be found in “ordinary” software development environments?
∙ RQ2. How do non-specialist developers engage with security in practice?

In answer to these questions, this paper reports the outcomes of a multi-sited ethnographic study
undertaken at two companies within the United Kingdom (UK). The report analyzes findings from fieldwork
conducted at both sites, and includes a situated, developer-centred account of security practice. The paper
also includes a set of empirically-informed inferences that exemplify how individual aims intertwine with
team and organizational concerns to produce security activity. Positioned at the intersection of individual,
team and organizational practice, the findings comprise an empirical baseline that managers and teams can
use to recognize, understand and alter security activity in their own environments.

The following pages are organized as follows. Section 2 provides background for the study’s examination
of the social and cultural aspects of security practice. Section 3 describes the methods used to collect and
analyze data. Section 4 characterizes security practice at both field sites. Section 5 categorizes findings from
both sites into a set of inferences about how security responses form in professional software development
environments. Section 6 provdes limitations to the work, while Section 7 discusses the implications of findings.
The article concludes in Section 8.

2 BACKGROUND

Security is recognised to be socio-technical [7], marked by the actions people take as they encounter measures
put in place to provide protection. Security measures are defined by policy and are increasingly enacted by
software engineers given the task to implement security within software. Crucial to the success of many
security initiatives is engineers’ use of accepted programming and design principles such as input sanitation,
or the principle of least privelege and defense, and technologies, such as TLS/SSL, digital certificates and
public key cryptography. However, successful security is not only about technical skill and knowledge. It is
also social, dependent on attitudes and work practices that are “suitable” [7] for meeting security goals.

This section provides a survey of literature that addresses three social dimensions of security. Taken
together, the sections align the research conducted in this study with a notion of secure coding practices
within professional development that extends beyond technologies and techniques to accomodate the social
and cultural aspects of security.

Security Responses in Software Development 3

2.1 Security Attitudes and Hindrances

Within software engineering, “suitable” attitudes [7] are often described in terms of mindset [56]. Software
engineers are encouraged to think like attackers, to consider the ill intent or aims that other people might
have toward the system they are building. In imagining how an attacker might try to gain access to a system

— and what an attacker might do when they gain access [60] — developers also need to take a defensive
position. They must find and acknowledge weaknesses or flaws in their software that might make it easier
for attacks to take place.

As a part of adopting a security mindset, the broad expectation is that developers will consider how to
find and mitigate weakness at each stage of the software development lifecycle [37]. In so doing, engineers
can ensure that software architectures and implementations address current [15] and relevant threats such
as those that appear on the OWASP Top 10 List [69].

One difficulty in fostering the right mindset is that the need for developers to actively engage with
security is intermittent. In many environments, developers rarely need to use security techniques such as
cryptography in their software. When they do, using security implementations in available application
programming interfaces (APIs) can be difficult [39]. Another concern is the methods developers use to fill
in gaps of understanding. One way developers augment their own experience is through the use of online
sources [33]. App developers report that they gain secure coding skills using internet sites and podcasts[72].
Developers have also been shown to share perceptions and informally learn about security as they discuss
programming problems on answer sites like Stack Overflow (SO) [32]. However, guidance in online sources
has been shown to be incomprehensive and unsound [2], raising concerns about work practices around
security. The concerns have warrant: the choices developers make can lead to vulnerabilities in code, as —
to take one instance — when insecure code snippets are cut and pasted from online sources [23].

Even when they are knowledgeable, developers can overlook security in the midst of tasks [42]. A recent
series of experiments run with students, freelance workers, and professionals found that participants in each
environment did not write code to securely store passwords unless they were given an explicit prompt [40, 41].
Whether it is a question of poor understanding or oversight, the findings about prompting raise questions
about the responsibility programmers have to keep software secure. It may be that security is a secondary
concern [1] and, like other non-functional requirements [65], must be prioritized alongside the tasks developers
complete to meet organizational demands for production.

2.2 Security in Organizations

Workers play a key role in delivering information security for organizations [30]. As users of technology with
access to sensitive information resources and systems, workers comply with organizational policies through
automated controls [26] that enforce general rules about what can and cannot be done. Awareness and
understanding of how to comply with organizational security policies are supported through training and
education provided by organizations [13]. The aim is to develop a strong security culture, in which workers
not only comply, but also have a personal commitment to being secure [25]. It is through a high level of
individual commitment that secure behavior on the job is said to become so ingrained it is unconsciously
performed [45].

4 Lopez, et al.

In the context of software development, developers enact security mechanisms, but also must cultivate an
understanding of how particular techniques and actions taken within code provide assurance that software
complies with security policy [6]. The research suggests that this understanding is difficult to foster in
practice. Activities designed to raise awareness, such as providing access to pen testers, are perceived by
developers to be helpful, but may not always translate to changes in behavior [46]. In examining software
development at different points in the lifecycle, Assal and Chiasson found that in many cases, best practices
for improving security in code were simply ignored by developers, on the basis that they were considered to be
burdensome [9]. Related research looking at engineers’ perceptions of privacy similarly found that participants
thought privacy was important, but technically difficult to implement, in part because mechanisms and
policies were perceived to be vaguely defined within companies [11].

The nature of the software being produced in organizations may also matter. Developers writing security-
critical software work in environments with organizational support to prioritise security within the software
development lifecycle. However, the environment within “ordinary” software development environments
may not include formalized processes that ensure that risk is properly managed and that security is
fully considered [7]. Upholding security may instead fall to the efforts of individuals who take a personal
interest [72]. The surroundings matter: as has been shown in privacy research, it is possible that even if
engineers are willing to take responsibility for security, social factors within the broader environment may
discourage them from taking action [28].

These studies point out that individual commitment to being secure does not ensure compliance with
security policy. There is a further point to make. When a company’s security implementation does not meet
workers’ needs, they have been found to actively devise adaptations or techniques to allow them to remain
productive [45]. Such “shadow” practices often indicate that workers are isolated from security decision
making within companies, and as a result, prioritse being productive over behaving securely [30].

2.3 The Social Side of Security

Work practices are influenced by organizational surroundings, but also through networks of peers [47]. It has
been argued that workable security is not championed by a single person but is instead created by a mix of
non-specialists who contribute to a secure workplace from within their own competencies [10]. Such groups
include individuals for whom behaving securely hinders productivity, others who primarily follow policy, and
groupings of individuals that actively discuss the social imperative for security and also challenge perceived
gaps in organizational policy and process.

Social interactions in the workplace are also recognised to be a part of security within software engineering.
In a study examining social influences on security tool adoption, nearly half of the participants were found to
learn about tools through the recommendations of co-workers [75]. Social interactions outside the engineering
fold are also important. When members of security teams work alongside software engineers, engagement
with security and secure development practice improve [44]. There are also indications that within software
engineering, the “mix of individuals” extends to social connections made online. Xiao et al.’s study of tool
adoption also found in some cases that developers trusted engineers with a high reputation online more than
colleagues in the office [75], a finding explored in more detail by van der Linden et al., who determined that
developers select on-line sources in part based on surface features within posts that signal — sometimes
erroneously — that an answer is authoritative [68].

Security Responses in Software Development 5

These studies point toward the importance of the communities within which developers operate: communi-
ties within a team, an organization, and across the profession. Use of programming languages, programming
paradigms like object oriented programming, and software quality initiatives are influenced by community
and culture within software practice [59]. Developers’ engagement in peer-to-peer interactions and the
cultures that form around them have been found to bring about lasting cultural change within the software
developer community, for example through new technology adoptions [51], and continued adherence to
processes and methods [50]. There is every expectation therefore that a deeper examination of the professional
cultures developers inhabit will yield a greater understanding of how technical, organizational, and social
factors impact security in the workplace.

3 METHOD

Prompted by the discrepancy between the wide availability of security tools and the ongoing problem of
breaches and vulnerabilities, the ethnographic method was selected within the Motivating Jenny project 1

to examine the technical, organizational and social dimensions of security highlighted in the prior section.
Ethnography is used to study peoples’ actions and accounts of actions from the perspective of the

insider [52], and allows researchers to develop understanding about what practitioners working in socio-
technical environments do and why they do it [5]. Ethnographic studies play a number of roles in empirical
software engineering. They can inform the design of software engineering tools or, as in this work, provide
insights that can be used to improve process [58].

In common with other ethnographic studies, the research was not conducted to a fixed design, but was
flexible [52]. Research questions were pursued and refined [29] through collection and reflection upon data
gathered within a range of activities and sources [70]. To gain sufficient access to naturalistic practice [19],
the decision was taken to conduct field studies in multiple sites. The organizations that provided access were
known to the research team as the second author had studied both in the recent past. However, the previous
studies were not related to security practices. The research was organized as a multi-site ethnography [34],
described in more detail in the following section.

3.1 Multi-sited Ethnography

Multi-sited ethnographies acknowledge that some cultural phenomena are not spatially bounded [21] and
cannot be accounted for through a localized focus on a single site. The approach requires researchers
to draw connections between data collected from different environments and challenges them to change
perspective about the object of inquiry [35] by acknowledging multiple perspectives held by participants in
different places [35]. In the case of this research, through collaborations formed with industry partners in
two professional environments, the researchers were able to maintain a critical stance toward security as a
phenomenon [29] and to challenge conceptions [58] of the role developers play in keeping software secure [18]
as they are commonly reported in trade and research literatures.

In practice, the multi-sited approach meant that the researchers engaged with participants at the two
field sites in different ways. The gatekeeper at Site A was fully briefed about the study’s focus on security
practice among developers. However, to reduce reactivity [29], participants at the site were only gradually

1https://ordo.open.ac.uk/projects/Motivating_Jenny_to_Write_Secure_Software_Community_and_Culture_of_Coding/76284

6 Lopez, et al.

Fig. 1. Timeline of site visits. Yellow dots indicate planning meetings. Blue dots indicate site visits on a single day that
included observation, interviews and workshops. Blue blocks indicate a visit spanning multiple days. Green dots indicate
member checking performed with a questionnaire.

made aware of the research focus in the course of multiple interactions. Observations made in Spring 2018
were followed up within semi-structured interviews and a feedback and workshop session held in November,
2018, a timeline illustrated in Figure 1. As a result, interactions at Site A produced insight into how security
naturally occurs, that is, how it “comes up” in daily practice.

By contrast, participants at Site B were informed from the initial planning meeting in 2017 that the
project had as its focus the investigation of security practices among developers. In this meeting, members
of technical staff were openly asked about their views on security, and were invited to ask the researchers
questions about how the topic was being investigated. Subsequent access to developers was delayed and
constrained at this site. For this reason, interactions in late summer, 2019 were organised to collect data
about how security fits into project work that includes interactions with clients, providing additional insight
into the ways that organizational context intersects with developer practice.

The following subsections introduce each organization and give an overview of their engineering practices.

3.1.1 Workforce Management (Site A). The first organization develops and maintains a single, expanding
suite of workforce management software. Originally an independent organization, it was acquired in mid-2016
by a global software company. The offices house about 100 employees, 40 of whom comprise software
development teams. A further 16 engineers who work with teams based in this office are located overseas.
Some overseas developers work alone; others are co-located with other developers, who may or may not be
working on related projects.

At the time of the study, the site was in the process of integrating a set of applications with those
developed by the parent company. The software development teams use Scrum-based Agile practices. Each
team is assigned a scrum master and one or two product owners; each scrum master and product owner may
be associated with one or more teams. In addition, there is one user interface specialist, one UX specialist
and one technical author, who work across the teams. All teams follow a release cycle of 8 weeks organized
into three two-week sprints dedicated to the product backlog, followed by 2 weeks for making fixes and
regression testing. Developers often interact with clients by proxy, through front-line contacts on the sales
and service teams.

Security Responses in Software Development 7

3.1.2 Management Consultancy (Site B). The second organization is a software house that has a history
of engineering solutions to meet tricky technological problems, and has experience working across a broad
range of industries and employing different languages and platforms. Due to the wide variety of projects
they managed, engineers usually collaborated with additional teams at partner agencies or client-owned
teams who were often not co-located for an entire project. This group also has a strong engineering culture;
the preferred approach to all projects has been for early and consistent input from engineers, with a lead
engineer being assigned to manage the project from the technical point of view.

This software house was acquired by an international management consultancy company in November
2016. At the time of the study, they were integrating themselves into the larger firm. The engineering
approach was changing: engineers who formerly worked in the software house were no longer as involved
in identifying requirements, and had less interaction with the client. Instead, a consultant (or group of
consultants) interfaced with the client to identify, analyse, and document requirements. The majority of
engineers from the organization were working at client sites for most of the week, entering the client’s
environment to develop software. This involved interacting with employees of the client organization.

Table 1. Data Corpus

Field Site Activity Participants Sources

Site A

Observation 3 teams of 3–8 developers,
scrum masters & product
owners over one sprint

Fieldnotes; audio recordings;
photographs; output from
tools

Contextual Interviews VP product development,
technical product owner, se-
curity officer

Audio recordings, partial
transcriptions

Semi-structured interviews 13 developers Audio recordings, transcrip-
tions

Feedback session 8 developers Audio recordings

On-line Questionnaire 14 respondents 21 open and closed questions

Site B

Observation 1.5 days, ∼15 developers,
managers

Field notes; photographs

“Ice breaker” project inter-
views

4 developers Field notes, audio recordings,
partial transcriptions

Contextual Interviews 2 technical managers Field notes, audio recordings

Semi-structured interview 1 developer Field notes, audio recording

Modelling Exercise 8 engineers; 2 technical man-
agers

Video; audio recording, pho-
tographs

On-line Questionnaire 5 respondents 21 open and closed questions

8 Lopez, et al.

3.2 Data Collection

Field data were collected over a period of 2.5 years through observation, contextual and semi-structured
interviews and workshops. Figure 1 shows a timeline of activity at Sites A and B, while Table 1 gives an
overview of data collection activities.

At Site A, data collection began within two planning meetings and several email exchanges in 2017. Data
were subsequently collected at four different points in time during 2018. At Site B, the researchers met with
line management and members of the engineering team in October, 2017 to explain and plan the study. Data
were collected at different points in time, beginning in November, 2018 and finishing a year later in 2019.
Data collection was undertaken under the approval of the Open University human research ethics committee
(HREC). Participants were informed about the study, asked for their consent to participate, and were given
information about how to withdraw from participation. The researchers signed non-disclosure agreements
(NDA) with both field sites. The NDA agreements and ethnographic nature of the data collection preclude
data sharing.

3.2.1 Participants. Twenty-three developers directly informed this analysis through interviews, observations
and participation in workshop sessions. Thirteen were located at Site A and 10 at Site B. Developers at both
sites were employed to work directly on software produced for organizations as a part of engineering teams.
Participants included application and interface programmers, testers, product- and technical managers. The
informants at Site A were primarily co-located, but had experience working remotely, and in interacting
with remote team members. At Site B, engineers frequently varied their location to be on client sites or in
their organization’s central offices. Table 2 gives an overview of participants at each site.

3.3 Analysis

Analyses were of two main kinds: descriptive analyses were performed to identify patterns in the data,
reported in Section 4, followed by theoretical analyses, in which patterns in the data were explained through
comparison and in relation to related literatures [8], reported in Section 5. The analytic aims were two-fold:

(1) Descriptively, to produce an authentic account [5] of the fieldwork that is also authoritative, convincing
the reader of the legitimacy of what was seen and reported by participants [5].

(2) Theoretically, to elicit and explain a set of inferences detailing essential connections between charac-
teristics that were observed in the field [61].

As depicted in Figure 2, research was organised in three phases. Analysis began at the point of data
collection as first two authors formulated ideas about how to refine the research problem, identified additional
sources of data, and gave preliminary interpretations. Data from each field site were catalogued and annotated,
and cursory evidence was found during this process to suggest possible connections to motivation and
individual career paths. These insights were pursued through examination of related literatures within
information security, management science, and software engineering. Accounts were written that described
patterns in the field data, surfaced through an inductive examination of interview and observational data.
Following Small [61], these findings were compared and interpreted to identify a set of inferences about how
developers respond to security.

Security Responses in Software Development 9

Table 2. Participants at Sites A and B

ID Role* Site Age Years of Exp.* Time at Org*
P1 SE A 24 4 1
P2 Lead SE A 45 20 20
P3 Sr. SE A 46 13 1
P4 Lead SE A 29 10 3
P5 Software Def Mgr. A 32 12 4
P6 Tester A 40 17 17
P7 Sr. SE A 67 45 17
P8 Sr. SE A 28 6 15mo.
P9 Principal SE A 35 10 3
P10 SE A 29 8 2
P11 Tester A 34 4.5 2.5
P12 Senior SE A 40 18 5.5
P13 SE A 31 4 15mo.
P14 Sr./lead SE B 46 26 17
P15 SE B 30s 14 1
P16 Sr./lead SE B 35–45 16.5 2
P17 Sr./lead SE B 25 2 2
P18 SE B 25 3 1.5 mo.
P19 SE, Release Eng. B 41 19 1.5 mo.
P20 Software Dev B 30 6 1.5
P20 Lead Front-end Dev B 27 7 9mo.
P21 Sr./lead SE B 45 24 5
P22 Sr./lead SE B 56 33 5
P23 Sr./lead SE B 30s n/a n/a

* Roles, years of experience, and time at organization were self-reported by partici-
pants.

Though described in terms of stages, the process was iterative and reflexive. Analysis entailed listening to
what participants at field sites said, but also considered how participants’ reports might have been shaped
by their interactions with the researchers, and with other aspects in their environment [29], including other
developers, the workplace, and within the broader software development profession. In addition, the fieldwork
reported in this paper ran in parallel to other activities that examined security in online environments,
practitioner engagements, and workshops. Interactions within each of these streams were examined for
evidence of security activity that could help explain or call into question [5] the "ways of thinking and
working" [7, p.856] observed and reported in the field sites.

The following subsections give insight to activities that provided structure to analysis, alongside represen-
tative examples drawn from the data.

10 Lopez, et al.

Fig. 2. Overview of the phased analysis, as applied to interview and observational data from Sites A and B. Data were
catalogued and features of security were described within accounts; literatures within software engineering, management
science, and information security were consulted to identify topics, and; data from different sources were compared with
one another to produce the interpretation, described in Sections 3.3.2 and 3.3.3. Diagram adapted from [14]

.

3.3.1 Phase1: Features of security. To support RQ1, this phase established a catalog of security work episodes,
described in Section 4.1.2 and included in Appendix A.2. The catalog included the security aim for each
episode, the perceived source of the threat (e.g. insider/outsider), the security mechanism, and the “source”
of security in the episode (e.g. a developer, a company, a tool, a policy). The catalog was created through
examination of observational, interview and workshop data, as described in the numbered points that follow.

1. Observation, Context (Sites A&B) In Sites A and B, non-participatory observation was used to gain a
sense of the rhythms of practice [58]. Observations were driven by the activity of the developers within
teams, but were focused on observing instances of security-related practice as they occurred. This
led to the collection of a set of traces of security that gave contextual support to RQ1, highlighting
aspects of security awareness within each site, and providng information to support interviews and
other interactions. For example, at Site A, bunting with colored flags was strung around the office
to mark important milestones. One flag was marked with the text “bcrypt”, indicating that the
engineering teams had undertaken work in a prior release to secure user passwords. The flag was used
as a deepening probe in an interview to situate security activity of the department within the personal
chronology of a participant’s account.

2. Participant Interviews (Sites A&B) Work episodes were also identified at Site A from data collected
through semi-structured interviews taken with members of the teams that had been observed. Interviews
were conducted by two of the researchers who also performed observations. The interviews included
questions of two types. The first set examined aspects of the participant’s career development and are
not reported here. This study analyzed data from the second set of questions— adapted from use
in political [62] and everyday security [17] contexts— that asked about attitudes and beliefs about

Security Responses in Software Development 11

Fig. 3. Modelling exercise. Participants from Site B worked in pairs to create a physical model of a project that included a
security aspect and represented policies, technical or other measures, and social aspects. Each session was filmed to capture
the workspace, participants’ hands and discussion.

security and software development in the organization. These questions can be read in Appendix A.1.
At Site B, incidents were identified within data collected during short “icebreaker” interviews and
within one longer, semi-structured interview.

3. Modelling Sessions (Site B). Work episodes for Site B were also identified through data collected
during modelling sessions held in 2019. Tailored after the creative securities [16], the sessions were
designed to provide insight into how security fits into project work that includes interactions with
clients. Five hour-long sessions were held with pairs of engineers and managers. In each session, the
participants were asked to create a physical depiction of their working environment and to identify
aspects of security within it that represented policies, technical or other measures, and social aspects
(see Figure 3).

3.3.2 Phase 2: Engineering and social activity. In this phase, and contributing to RQ2, interview and
observational data were examined for evidence of engineering and social activity. Lending structure to this
process, data from each work episode (see Table 6) were used to categorise and provide high-level descriptions
for the episodes, and to characterise the security knowledge employed within them.

Next these factors were used to annotate conversations held between developers at both sites (see Figure
4). Affirming prior findings in studies conducted online [32], developers in the field sites were observed to
form small, informal relationships with one another to give and receive help in solving problems that have
a security aspect. In particular, exchanges indicated that within common engineering tasks, developers
provided each other with focused assistance about individual questions, associated technology facts about
tasks with security problems, and situated advice within the broader security landscape.

12 Lopez, et al.

Fig. 4. This figure shows an example of an informal conversation observed at Site A. Annotations highlight security
knowledge [63], features of security in interactions [33] and work factors [24]. For other details about this episode, see
episode 1 in Appendix A.2)

This confirmed impressions that engineering and security activity are similarly intertwined within social
interactions in on-line and face-to-face settings. The conversations also suggested that developers have an
inner work life in which they respond to events [4], leading toward the activities undertaken in Phase 3.

3.3.3 Phase 3: Engineering responses to security. In this phase, and providing the theoretical contribution, a
framework was developed to explain the interplay between security features identified in phase 1 and the
engineering and social factors isolated in phase 2.

As a part of this, extracts from interview and observational audio data were selected from the data corpus
in which participants described or undertook security activity in the workplace. Building upon impressions
formed in phase 2 activities of the inner work life [4], individual statements about the described events were
examined for positive and negative perceptions that have been shown to affect satisfaction in the software
engineering workplace [24]. The context surrounding the event and relations to work factor perceptions were
noted. Statements were also identified in which the participant commented or reflected about the perceived
significance of the experience to their practice.

Finally, individual instances were compared with one another by the first two authors to compile a set of
five distinct responses that reflect characteristics of “security response” within software development. The
set of responses is displayed in Table 3, that are more fully explained in Section 5.

4 FINDINGS

As explained in the prior section, the analytic process in this study was pragmatic, drawing different sources
of data together for description, comparison, and interpretation [29]. In this section, a descriptive account of
the fieldwork is given [5]. First, in answer to RQ1, an overview of organizational security for Sites A and
B is provided„ followed by a description of security work episodes. In Section 4.2, and supporting RQ2,
subsections describe how developers personally engaged with security at both sites. Taken together, the

Security Responses in Software Development 13

Table 3. Response synthesis

Statement +/- Work
Factors

Context Reflection Response

“It was in front of me, it
was available, and I started
reading and started saying
suggestions on how to get
around [problems].”

+ creativity Org –
introduced a
vulnerability
scanner

"After [that task], I used
OWASP a lot. Now I
understand that the
second there’s a slight hole
it’s a big deal."

Explore

“The objective from the
outset was a high level of
security. We began with
the architecture. Previous
projects got stymied by
rules and bureaucracy and
we thought this time we
won’t do it that way.”

+ good
relationship
with users

Client – flexible,
open to new
solutions,
increase in
budget.

“The heartbleed issue was
a vindication for us.
Though the system
included TLS, we were
able to say no action needs
to be taken, our line of
defense is completely
adequate.”

Direct

“They can’t upgrade it
because it would break
half of the projects on
there at least. And they
have no way to check or to
audit.”

- poor
environment

Parent Org -
legacy
environment

“I know because I was
trying to get something to
work for XXXXX. If I
have the ability to commit
code on one project, I can
probably break all the
others.”

Worry

“. . . Run SSH gen to make
sure you have the right
folder. . . And then copy to
the right folder.”

+ good
relationship w/
colleagues

Team –
communication
between teams
encouraged

"I quite like the ’someone’s
got a problem’ and helping
them resolve that problem
so they can carry on with
whatever they are doing."

Guide, Fol-
low

sections describe ways in which developers at Sites A and B interact with and contribute to security activity
within their environments, and provide an empirical foundation for the framework of security responses
presented in section 5.

Interviews taken with security professionals and managers at both sites provide contextual depth for each
of the sections. However, the descriptions reflect the perspective and perceptions of the developers from
each site who informed the research (see Table 2). Text within quotes has been edited to remove repetition,
para-linguistic utterances, and company specific information. Omissions are indicated with ellipses in square
brackets “[. . .]”. Where necessary, words are supplied. Supplied words appear in square brackets, for
example “[supplied]”.

4.1 RQ1. Where can security be found in “ordinary” software development environments?

Sites A and B were each acquired by larger companies. Site A was an independent company until mid 2016,
when it joined the parent company based in the US. Site B was acquired in November, 2016, the year before
the study began in 2017. In both cases, the parent companies introduced a stronger organizational emphasis

14 Lopez, et al.

on security and brought with them security expertise and knowledge. The effect of the acquisition was
perceived differently by participants at the two sites, as described below.

Since the acquisition, Site A has an increasing “will” to improve security within the engineering department.
This change was associated by participants with a growth in the business over the years from a small
operation with a small technical team that “organically grew” software to meet the needs of a few customers.
As it has grown, software practices have had to be shored up and security issues in legacy code have needed
to be addressed. However, the parent company also has a specialist security function and a Chief Information
Security and Privacy Officer (CISPO) who is responsible for protecting both company and customer data,
and making sure appropriate security controls and auditing are in place. Security roles within software
development in the parent company were expanding during the study, and increased auditing reports and
security training were being rolled out globally.

Site B’s journey has been different. In the past, security processes were perceived to be “simpler” and
security was built in from the beginning by the engineering team. Engineers used technical spikes and
prototypes to help identify risks and tease out uncertainties with clients. By contrast, the acquisition brought
with it a dedicated security team. More people are involved now and additional layers of approval are
required for choices made in software design and implementation. Detailed written security specifications
are produced for each project and engineers have the sense they have less freedom to find solutions. Perhaps
as a consequence, developers at Site B make a distinction between complying with security policy and
engineering a secure system, explaining “[Now] you’re thinking about compliance, whereas [in the past]
you’re thinking about practically how you develop a secure system”.

4.1.1 At the Team Level. This acquisitions at each site provide insight into the different ways that security
handling within teams changed as a result of organizational shifts. Changes brought in by the larger company
were perceived to have an effect within teams at both sites in physical and network security, and in security
policies, described below.

Physical Security The engineers at Site A were aware that new security measures had been put in place to
protect the company. One participant explained that measures are taken in code to keep external attackers
out, but can also be used by companies to slow down, or counter internal threats from employees. This, they
explained had been done at Site A through changes to the physical environment. For example, access to the
building and to individual rooms was now controlled through keycards, a change that another participant
noted “gets in the way” but was not reported to create problems.

Similarly, at the end of 2018, the engineers at Site B moved locations, leaving their own set of offices and
joining a corporate office in a different part of London. The physical environment changed immensely in
the process, going from an open plan arrangement accessible by a buzzer and a key card, to offices with
several layers of access control applied to each floor in the building. External visitors were permitted to
access assigned meeting rooms on a single floor, and were required to register with staff upon entrance to
the building.

Network Security At Site A, access to production machines was taken away from developers. At the time
of the study, engineers were required to ask the lead engineer on their team to let them into the production
environment to complete some tasks. Though one team lead found these interruptions to be “annoying”,
they understood why the change in responsibility was necessary. Security measures were also added to

Security Responses in Software Development 15

control access to machines on the networks. As one engineer put it, “it is all the same kit, but with an extra
layer of protection around it”. Both changes were described by multiple participants as positive, in that the
new controls countered the risk of malicious activity.

The technical environment underwent changes at Site B, too. For example, requirements from the parent
company’s information security team regarding vulnerabilities in the packages that they use introduced new
audit tools; and new security access controls were placed on deployment and development environments.
These controls and processes were reported to cause frustration and workarounds that worried developers.
As one participant explained, “If you’re on the developer list, you have access to every single workbench,
including a whole bunch of projects [we are] not meant to know about”.

Security Policy Security policies were differently formalised within the development lifecycle at the two
sites. The work of the security team in the parent company at Site B ran parallel to the work of the
software engineers, so although a specification might say “This has got to be highly secure”, non-functional
requirements might not be discussed for many months. In response to this, the software teams had tried
adding audits into the integration process to protect the systems from malicious insiders, explaining, “all code
commits were associated with a developer so we had control and audit of what was going on through code
submission, review and release”. But further down the line it slowed down progress, and so was abandoned.

By contrast, the teams at Site A had only recently begun to write security-related coding standards,
initiated by the principal software engineer. The engineering teams also took steps to integrate security in
the development lifecycle, running automated tests each week against the software to identify issues that
appear in the OWASP top ten list. Depending on the severity of issues reported in this tool, the technical
product owner responsible for security and privacy generated technical stories that were either immediately
actioned or added into the relevant backlog.

4.1.2 Within Tasks. Changes in organisational security brought by acquisitions at both sites provide useful
context to everyday software development tasks observed and reported at both sites. Organised within a set
of 10 episodes (see also Appendix A.2), three tasks in this set were observed as they occurred, including a
task in which a pair of developers set up a virtual work environment (EP1), a second in which a developer
interacted with the software repository (EP8), and one in which a pair implemented code to meet regulatory
requirements for the European Union General Data Protection Regulation (GDPR) (EP7). The other
episodes were reported, drawn from interview and workshop data.

Work episodes had different durations and scales. One of the observed episodes comprised only a minute
or two (EP8), one lasted for around 15 minutes (EP1), and the third comprised around three hours (EP9).
Of the remaining episodes, seven developers recounted current or recent encounters with security in the
contexts and timeframes of projects. One developer recounted an experience with security in a project that
he had led for the company and had ended more than a year before the interview (EP5).

Tasks involved a range of activities including architecture and design (EP5), the use of tools during code
implementation, and code integration or administrative work within and between environments on the
technical network (EP10). Task completion required developers to employ or identify a range of different
kinds of security information [63], including knowledge about how to prevent particular attacks, approaches
and fixes as they related to the code and functionality, network security, application context and end-user
interactions, and the ability to understand and interact with tools that included security mechanisms.

16 Lopez, et al.

Security activity was not always apparent, even within tasks that included explicit security or privacy
implications. For example, in EP7, two developers were observed for three hours while working together
to add logging features to meet requirements for the GDPR. The developers involved did not at any
point mention aspects of the work that could be associated with security or privacy. Similarly, interactions
with security processes and teams were reported in another case to run parallel to the SDLC, resulting in
development outputs that failed security audits late in the process (EP6). This indicates that the requirement
for developers to engage with security varies by task. One participant from Site B explained this difference
in terms of “activeness”:

“When I’m thinking about security, these are the things I’m usually thinking about. So,
authentication, authorisation, encryption. A general hardening of say operating systems, doing
something with the firewall settings, or something that I’m actually thinking about security.
Whereas in a lot of the main part of security, I may be thinking ‘How do I make sure that I’ve
properly handled the various use cases?’ I’m not thinking about the security aspect of that. It
may increase the security, but I’m not thinking of it from that perspective. I’m thinking, ‘Let’s
make sure that the client doesn’t crash because the users will be unhappy’ [. . .] There’s also
the third category [. . .] everything from the source code repository we are using to password
management [. . .] and issues around the services and environment and which bits of them I
have choices over.”

4.2 RQ2. How do non-specialist developers engage with security in practice?

The prior section descripted aspects of security within the organizations at Site A and B and as security
was observed and reported to be a part of day-to-day software development tasks. Within episodes, each
participant had access to sensitive information and information systems within their organization or in client
sites. However, though many participants demonstrated a degree of awareness of common vulnerabilities
and indicated security training or education, only a few participants reported that security was a prominent
aspect of their day-to-day work. This section describes how participants engaged with security at both sites,
as a part of their professional development, interest in and curiousity about technology, and need for social
connection.

4.2.1 Desire to Produce Good Software. Among participants, the desire to produce good software was
associated with security in two ways: as both a duty to protect and in terms of the personal ability to
prioritise and drive security activity. Both were characterised by participants using positive and negative
experiences.

A duty to protect. At Site A, developers associated writing good software with a need to protect assets.
This was described in terms of protecting data for people, and of protecting the company from external
threats. These aims sometimes intertwined. P8 described a near-miss in which an area of the code was
found during testing that would allow client data to be compromised through the browser. In this case, the
problem wasn’t part of the sprint, but the team pushed for extra time to address the security concerns. In a
separate interview, P11 described the same incident in this way: “It was a real shocker when we found it.
We happened to be doing some work in a related area and I thought ‘What happens if I do this?’ and then

Security Responses in Software Development 17

found that [vulnerability] and thought ‘Oh, this is dreadful’, and we completely circumvented our process at
that point because we felt the situation justified it. It was a very quick fix and really straightforward.”

However, developers reported that they were not always able to drive security activity within the company.
P9 explained that making the case for bigger security initiatives was difficult with senior managers in the
organization, noting that one tactic they used was to entice managers with examples about how security
was done at “big” companies.

An ability to prioritise. The ability to direct and drive security activity was connected to good software
at Site B. P14 gave an account of a positive experience in which they were given the freedom and flexibility
to engineer a bespoke system for a company in the financial sector. P14 tied the freedom he was given to
build security in from the very beginning to the success of the solution, which was described as optimal,
and completely secure. This was contrasted by the participant with more recent projects in which clients
are not as open to newly engineered security solutions. P14 has the impression that newer clients are more
interested in ensuring that software is secure through the use of existing third-party products.

At Site B, P15 described working on a year-long, greenfield development project for a client. The team
working on the project is a blend of employees from the client, and consultants and engineers from Site
B. Though security was talked about by the “higher ups”, and was said to be important, there was no
follow through. Work on features seemed to be more important. A colleague working on a different project
described a “sense of unease” in knowing how hard to push back on projects where he could see that more
could be done, explaining it as a “mismatch” between his priorities as an engineer and the reality of how
projects are run.

4.2.2 Having a Keen Interest. Engaging with security out of personal interest was reported in terms of
developing particular skills or techniques as a part of project work, and also as an individual topic of interest
or curiosity.

Security skills were gained as a part of duties. In the course of completing his successful project, P14
needed to develop a high degree of skill and knowledge about cryptography, an interest that is still cultivated
on the side. Similarly, P8 explained that they didn’t feel that they had been “picked to be the security
guy” at a prior company, but the team was tasked with running a scanner to identify vulnerabilities and
“it was in front of me, it was available.” P8 took an active role, giving suggestions about how to resolve
vulnerabilities. This was also true of other participants. P9 had active role in promoting security at Site A,
driving technology changes in the architecture to upgrade the language used in a core product and improving
the security of data at rest.

Security was explored for its own sake. Though several participants mentioned an interest sparked by
coursework at university, or simple hacking attempts that were treated as a game or puzzle, self-study was
the primary path into security. As P9 explained, “Most of this was on my own, reading stuff and reading
other people’s pitfalls. I realised that I knew an awful lot about this. I don’t know when that happened
though, I couldn’t pinpoint it [in time].” Not every participant found security to be accessible or easy to
learn. In one case a participant explained that they might like to learn more about security but found it
difficult to get past the “basics”, in part because it was not about building some thing “tangible”, but rather
about building something “proper”.

18 Lopez, et al.

Interestingly, having a sense of duty or interest were not guarantors of active engagement with security.
This appeared to be connected to circumstances within the work environment. During this study, P9 was
actively pushing forward security initiatives as a part of their role at site A. However, though P14 is still
interested in cryptography, the project is over. On newer projects, they have less influence with clients
over engineering decisions that could impact security and so they are considering taking a less active role
in leading projects with a clear security focus and getting into different technologies, like Rust. Similarly,
P8 indicated they had developed a high degree of explicit knowledge about security in past employment.
However, when asked whether they needed to do more about security at this company, they explained that
a recent promotion left them with less time. As a consequence:

“I am not looking for these holes or problems. I’m not invested in trying to see if I can find a
better solution. I’m happy to implement them when they’re found or I know about them.”

4.2.3 Feeling Secure in One Another. Developers reported engaging with security out of interest and to meet
professional demands, but also as a way to feel secure as professionals. The sense of security was fostered
while working through situations in three ways: through informal learning, by establishing or exercising
values like trust, reputation, and belonging, and through assessments of their own standing as professionals
within their teams and companies.

Security was a collective responsiblity. One participant at Site A was observed to pass tips about security
hygiene to employees outside the engineering team. Code reviews were reported as one place where security
implications were traded and discussed. As might be expected, P9 is respected in the department team for
their knowledge about security, and team members mentioned more than once that P9 was the best person
to speak to about security within the engineering department. However, the developers within the teams
were also dependent on one another, reporting “seeing things in the code” written by colleagues that showed
them how to do security and feeling secure in the choices taken by others in the company.

Developers informally learned about security through social interactions. Though P14 displayed detailed
knowledge about cryptography in our meetings, they explained to us that their knowledge was fostered
by a team member with experience using cryptographic techniques to secure data, a relationship that
was reported as enjoyable and significant. Similar relationships were observed at Site A. In the exchange
excerpted in Figure 4, P1 had trouble in setting up SSH keys on a new virtual environment. When asked
about the session P1 noted that the time the session took was about lack of experience, explaining that the
issue might not have come up or taken so long for a more experienced developer. However, P2 recognised
what was going on with the SSH key, but didn’t remember exactly how to fix it and did not self-identify as
an expert. P2 saw their role as stepping in to work through the problem alongside P1, offering advice and
support.

Security was upheld through trust and inclusion. Even as the acquiring company at Site A is placing more
security controls on environments to protect themselves from internal threats, developers on one team
worked extensively with data created by customers who use the software produced at the company. The data
sets can be so large that it isn’t practical or desirable to port and test the datastores in local environments
at Site A. Instead, the developers were given direct access to production environments in the customer’s
server space. When asked during an interview if the clients believed that the developers at Site A were
honest, P3 commented that they were not sure if this had ever even been considered. P3 noted that the

Security Responses in Software Development 19

Fig. 5. Security responses in software development: in a given work episode, the response given by an individual is taken
from a set of possible responses; the response is shaped by workplace factors [24] and is influenced by the surrounding
security climate [28].

developers on the team are “trusted to do the right thing” with the access they have been granted. Security
measures and attitudes of clients at site B were less trustful. Engineers reported needing to undergo multiple
background checks, a process that made it complicated to enter client sites and to “get going” with projects.
Other participants reported that they felt they missed out on information sharing at client sites because
they were outside the corporate fold.

5 SECURITY RESPONSES IN SOFTWARE DEVELOPMENT

The findings in Sections 4.1–4.2 describe ways that security were found at the team level and in individual
tasks at Sites A and B, and detailed developer engagement with security as a part of meeting individual
professional aims and social needs.

Building upon this account, this section outlines a set of inferences that relate key attributes of security
that were observed and reported in the collected data to findings in related areas of research. The inferences
culminate in a set of responses that typify professional developer behaviour and can be used by teams as a
lens on local attitudes and work practices around security. Figure 5 indicates how these aspects relate to
each other; these concepts are further described in the following sections.

5.1 Security Climate

Security activity takes place within an organizational climate that reflects shared perceptions around
security policy and the assurance measures implemented or adhered to by companies [28]. Within software
development, the climate is comprised of the organizational environments with which the developer interacts
as a part of their employment. This climate includes teams, departments, the broader organization and

20 Lopez, et al.

customers or clients; security policies in any of these environments; and the technical infrastructure and
associated security measures embedded within it: libraries, tools (including database management software)
and hardware.

Findings in Section 4 show that security is linked to the kind of work required to complete the task, but
also to the priority given to security by organizations and clients. As with privacy, the approach toward
security held by a company can constrain or influence the perception developers have to prioritise and
direct activity [11]. Three inferences can be made about how the security behaviour of developers in similar
environments may intersect with organizational expectations for compliance and priority:

(1) As users, developers must comply with security measures that are in tools. In these cases, compliance
is necessary: the security policies are mechanized, and the controls— often over access— act as forcing
functions [49] that stop forward progress. Developers interact with security policies through measures
put in place by the company to control their actions. Behaving securely is tangential to the task at
hand, but the need to comply is high. Participants in this study were observed to get past security
barriers as quickly as possible so that they could move on with the task at hand.

(2) Within technical systems, developers are expected to comply with security measures as they integrate
the software they write with the technical infrastructures of their companies and clients. In integration
tasks, the primary security mechanism employed is access control. In this study, the need to gain
access to a system by participants was often tangential to the development task and shadow tactics
were reported, suggesting an imbalance between the drive to be productive and the priority to behave
securely [45].

(3) As engineers, developers are entrusted to enact security policies for their companies and clients through
design and architectural decisions and in subsequent implementation and deployment activities. In
these cases, security is a primary concern within the development task, reported by participants as
“active”. Findings included examples in which participants played a dominant role in setting project
directions around security when organizations and clients were supportive.

5.2 Workplace Factors

A work episode refers to a developer’s workplace and to events that come up in it [24]. In this context,
episodes have a security aspect and entail common software engineering tasks within development lifecycles
and technical environments. The security aspect is any part of a work episode that involves efforts to
make or keep a system dependable in the face of malicious activity [6]. Such activity was associated by
participants at Sites A and B with professional standards for good practice. Reported and observed instances
included evidence of informal learning through localised problem solving [20]. In solving technical problems,
participants also reported that they gained awareness of acceptable security behavior within the security
climate. Examples of workplace factors are given in Table 4.

5.3 Responses

Responses are given by developers within work episodes that have a security aspect. Directed toward the task
at hand, a response is an analytic term describing practice that reflects an interplay between personal factors
and the broader organizational climate, depicted in Figure 5. Applied to examine work episodes that have a

Security Responses in Software Development 21

Table 4. Workplace Factors

Dimension Description Examples

Task The kinds of tasks in which security
activity is needed. Roles within tasks may
include use or administration [45], and
instances in which developers are expected
to enforce or enact security policies [6] for
their companies and clients.

∙ Using tools, APIs or application
frameworks

∙ Altering configurations or accessing
multiple technical environments

∙ Making design or architectural deci-
sions, writing and testing code

Informal
Learning

The professional competence a developer
exhibits and extends through problem
solving within a specific situation [20] that
can support task completion and improve
individual knowledge [72].

∙ Online information sources
∙ Training and education
∙ Support from other developers dur-

ing pairing, code reviews, informal
interactions “between desks”

Identity The professional standard to write "good"
software and other personal aims and
interests [57] that can direct security
actvity within work episodes

∙ Creativity - encompasses the need for
growth, variety and technical chal-
lenge.

∙ Professional standards - the desire
to produce good software; includes
seeing tasks through to completion.

∙ Social connection – including trust,
interdependence, respect and respon-
sibility.

security aspect, teams and companies can use the response types as a lens to examine local attitudes and
work practices around security. In recognising that a range of responses exist and by identifying contributing
factors in their own environments, it is possible to adjust security activity.

Following from the findings given in Section 4, several inferences can be made about security responses as
a represented behavior within software development:

(1) Responses reflect personal professional values and needs [17] and are visible at the team level within
informal collaboration and learning [20].

(2) Developers possess a set of possible responses that are assembled, refined and applied through multiple
experiences orrywithin their career [55], i.e. within different projects, roles and employment.

(3) Security responses are selected by developers to meet needs in particular situations. This statement
includes two implications:

(a) the priorities of project stakeholders within the broader security climate subsume those of the
developer, and

(b) the priorities for task completion influence developer behavior

22 Lopez, et al.

As the example in Box 5.3 shows, factors that combine to produce a response are nuanced and context
dependent. The response typology is neutral and faceted: similar factors can be associated with any of the
responses in a given situation. As a consequence, implications for stakeholders can be negative or positive.
For example, meeting production targets is a condition that was reported by participants to produce the
worry response. In Box 5.3, worry is a signal that highlights security as a priority to the developer’s team.
The recognition of the response in this case produces corresponding activities within the team intended to
improve security in the system.

To guide use of the response typology, the full set of empirically-informed responses, contributory factors
and implications for organisations, teams and individuals is provided in Table 5.

Box 5.3: Worry

An engineer is aware that a design choice has poor implications for security. They raise this issue
in a standup meeting, but the team is under pressure to meet production targets and the group
decides to add the problem to a technical user story in the backlog. In this case, task completion is of
higher priority to the organization than security, subsuming the aim of the engineer to produce code
to a high standard. The engineer implements the vulnerable design, but worries about the quality of
the product. The team picks up on their teammate’s discomfort, and pushes back with the product
owner in the next sprint planning meeting to make sure that the technical story is scheduled in.

6 LIMITATIONS

Ethnographies seek to capture, interpret and explain social life within groups, among individuals, and within
communities [52]. By examining security activity at two field sites, this study addressed constraints on
access [19] and the problem of ecological validity within developer-centred security studies [36]. The report
presents a situated representation of security activity that reflects the environments and periods during
which data were collected. As such, the findings cannot be applied to explain security behaviour in any
small or medium sized enterprise (SME). It is not possible to state that because multiple instances were
observed in which “following” was the security response, that professional developers only or primarily
exhibit following behaviour. However, it is possible to infer that professional developers are likely to follow
in certain circumstances, as described in Section 4, explained in Section 5, and exemplified in Table 5. This
research argues that responses like “following” are a distinct entity within software engineering, formed out
of an interplay of individual characteristics, work factors, and environmental circumstances. This claim is
logically composed [61] and could be tested in future work to examine practice in other environments. As
explained below, the research underpinning the claim is also trustworthy [52].

Descriptive accuracy and NDA compliance were ensured through peer debriefing and member checking [52]
at several points. 1) The response schema was presented to the full research group at a meeting in November
2019. 2) At both sites, researchers restated and summarised information provided by each participant or
asked contextual questions to clarify and correct understanding. These activities mitigated the risk that the
data collected were misunderstood or misinterpreted [53], and clarified that the interview questions and

Security Responses in Software Development 23

Table 5. Table of Observed Responses, Contributory Factors and Potential Implications

Response Given Observed Factors Potential Implications (for In-
div.,Team,Org.)

Follow: A person that follows
examples & prompts from
colleagues, or the policies &
norms set forth by a client/org.

Priority: security may be a pri-
mary or secondary concern.
Task use, administration or im-
plementation
Identity: good relationship with
colleagues (trust), learning &
growth
Climate: the org/client is active
with security

- may involve shadow tactics (I)
- may diminish learning or initia-
tive (I,T)
+ can promote awareness, knowl-
edge (I,T)
+ can strengthen culture (T)

Guide: A person that provides
support for localised problem
solving for a range of technical
topics, including security.

Priority: security may be a pri-
mary or secondary concern
Task: use, administration or im-
plementation
Identity: good relationship with
colleagues (helping behaviour);
learning & growth
Climate: the environment sup-
ports collaboration

- security approach may be/re-
main adhoc (O,T)
+ can promote awareness, profes-
sional competence (I)
+ can strengthen culture (T)

Explore: A person that is
engaged & may take an active
role in organizational security
initiatives.

Priority: security is a primary
concern for the developer
Task: use, administration, design
or implementation
Identity: learning/growth, cre-
ativity
Climate: the org/client exhibits
a commitment to security

- dependence on “champions”
(T,O)
- fluctuating levels of engagemen-
t/expertise (T,O)
+ can promote knowledge, career
development (I)
+ can strengthen culture (T,O)

Direct: A person that is
engaged, active in security
initiatives &very capable.

Priority: primary for developer,
may be primary or secondary for
org/climate
Task: designing or architecting
software
Identity: strong need for growth
or technical challenge
Climate: security commitment,
good relationship w/employees
(trust)

- dependent on concern align-
ment (O, I)
- dependent on strong engineer-
ing culture (T,O)
+ can produce developers with
a security specialism or near-
specialism (I)
+ can improve security outcomes
in code (O,T,I)

Worry: A person that is
engaged with security but does
not perceive or have an ability
to act.

Priority: mismatch – primary
for the developer, secondary for
org/client
Task: all tasks
Identity: professional sense of re-
sponsibility or duty of care to
keep systems secure
Climate: may not prioritise secu-
rity or reward developer initia-
tive

- may accompany shadow tactics
(I,T)
- may indicate poor working con-
ditions or poor relationship with
clients (O)
+ may promote compensatory se-
cure behaviour or pushback (T,I)
+ may provide a project health
indicator (O,T)

24 Lopez, et al.

session prompts were accessible to the interviewees. 3) Gatekeepers at each field site were asked to review
and authorize the organizational descriptions given in Sections 3 and 2.2, and were provided with a copy of
the complete manuscript submitted for review.

Credibility and authenticity of the interpretations were established in three ways. 1) Preliminary findings
were shared with participants at site A in a session held in November 2018 during which a brief of the full
research project was presented and participants were asked to reflect and openly comment as a group about
security as a part of daily practice at Site A. 2) In meetings and informal conversations, the researchers were
able to compare preliminary interpretations formed at Site A with information gathered through interactions
held at Site B. 3) The multi-sited approach ensured access to multiple security events and situations within
professional development activity, countering the risk that time spent in the field would lack depth [29].

The soundness of the response framework was assessed using the following techniques. 1) The feasability
of the situated nature of responses was established through examination of related literatures and was
further assessed in analysis of interview data collected at Site A. In these data, participants’ perceptions
about security events could be compared at different points in time. 2) Analytically compiled responses were
assessed in an online questionnaire. The questions were designed to evaluate construct descriptions [22]
and to affirm the claim that individuals have a set of potential responses that can be applied in different
situations. The questionnaire was deployed to participants at Sites A and B and was employed as a source for
member checking with developers at additional companies in India and Brazil. Every respondent indicated
that multiple responses described them – no participant reported that none of the responses described them
and no participant selected a single response.3) Information collected using different methods within the
two field sites were compared with each other [52] and with information about security practice collected
online in Stack Overflow, as described in Section 3.3.2.

7 DISCUSSION

Security in software development is complex and multivalent. In a range of roles and within different
tasks, this research has shown that developers are not only concerned with technical aspects of keeping
software secure. Like workers in other fields [10], participants in this study promoted and enacted security
policy, but also discussed, interpreted and questioned the decisions made within their companies and by
clients. The notion that workers respond to events in the workplace has been recognized within management
science [4], as an aspect of developer practice [24] and within privacy research [11] in software engineering.
The ethnographic account given in this report demonstrates that responses are a represented behavior in
software development activity that includes security.

Section 5 argues that security responses arise out of an interplay between personal factors, task requirements
and the broader organizational environment, a connection also proposed by Mokhberi et al. [38]. Through
a systematic literature review, Mokhberi et al. outlined challenges to writing secure code and tracked
dependencies between human, technological and organizational factors. Organised within a conceptual
framework, the authors distinguished the organizational dimension, finding that factors such as the manager
mindset, attention to requirements and policies, and culture were found to have the greatest influence on
factors within other dimensions, including the efforts and capabilities of developers.

A recent qualitative analysis that used narrative and situation analyses to characterise the organisational
security landscape in terms of “social worlds” [66] observed that the stakes for security are different for

Security Responses in Software Development 25

participants of different arenas. While the reputational stakes were higher for organisations, arenas within
the engineering fold, including those of developers, project management, and security teams were more
directly involved in setting security priorities.

Evidence of organizational influence in the findings presented in this research had negative and positive
aspects. Positively, participants held the perception that developer responsibility for security was shared by
organizations and their clients. The controls applied to technical systems provided assurance to engineers
and were recognized as necessary and beneficial. The organizational circumstances documented in Section
4.1 suggest that the measures taken by organisations freed developers from the need to consider security.
Though other studies examining security within the development lifecycle have interpreted similar behaviour
as one of taking secuity for granted [9], the broader contextual circumstances observed at the two field sites
suggest that organizational measures instead allowed participants to focus on their primary responsibility of
implementing and maintaining features in the code.

On the negative side, the priority placed on security within the broader organization and by clients
affected the perceived ability participants had to drive security activity. Findings reported in Section 4
and outlined in Section 5 put the notion of security as a secondary concern [1] into perspective, showing
a connection between the priority of security within the broader climate, and the perceptions developers
had that they could direct security activity within projects. As has been shown in privacy studies [11], in
projects in which security was a secondary concern to stakeholders outside the engineering fold, the ability
for developers to initiate security activity was dampened. In contrast, when security was a primary concern
within the broader climate, participants reported that they felt empowered to influence security outcomes
in engineering activities that included design and architecture or that they were free to explore security
topics and integrate discoveries within the workflow. This finding held regardless of reported levels of skill
or conviction, suggesting that the security positions of organisations may have more weight in promoting
security activity than does championing by individuals.

Nonetheless, conviction among participants was associated by participants with professional integrity — a
“duty of care” – and expressed in terms of the “golden rule” to manage others’ information as they would
want their own to be managed [47]. Belying the notion that security is considered to be “burdensome” [9],
the sense of duty to users held by participants at both sites in this study was coupled with loyalty toward
the company, indicating a willingness and commitment to “good” security.

The findings illuminate additional details of security knowledge and experience in developers. Recent
experimental work has found that developers do not unconsciously behave securely during programming
tasks, even if they have knowledge about security and an awareness of its importance [43] and that developers
working in different contexts will only address security when explicity prompted [40]. Though the participants
at Sites A and B possessed a degree of awareness and declarative knowledge about how to recognise and
address common vulnerabilities, none described themselves as security experts, underscoring the sense that
many developers are “ordinary insiders” [47]. Though knowledgeable and aware about security, they lacked
specialism. However, observational data at both sites included evidence that knowledge and engagement were
supported and fostered informally among peers, suggesting that security expertise in software development is
intertwined with and embedded within informal networks [73], a finding reported in [33], and also described
in the context of situated learning [67] .

26 Lopez, et al.

Observed social interactions included knowledge exchange about technical aspects of security, but not
always. In some cases, technical security was an implicit feature of work and entirely absent from discussion.
Instead, reflections by participants indicated that interactions fostered feelings of responsibility, trust and
connection, suggesting that they produced a sense of security [17]. Furthermore, at times such interactions
accompanied behaviors that were unequivocally insecure. Though these two findings appear at odds, they
drive home the point that security knowledge and awareness of software developers cannot be assessed solely
through measures of technical correctness. Maintaining strong professional relationships can matter more
than technical expertise or behaving securely.

This research points toward future work in several areas. As a muli-sited ethnography, the field sites
visited in this study provided multiple points of access to developers’ perceptions of security in the workplace.
The groups at each site were of a similar size and had established traditions and practices. Both sites had
also recently been acquired, a serendipity that provided a lens on changes in organizational perspective
and practice. However, constraints on access made it difficult to follow up with either site in the longer
term. Future work could examine how attitudes and work practices as an aspect of organizational security
maturity.

In addition, the data collection methods precluded detailed study of the direct influence factors within
responses have on software artifacts. For example, though participants described having a keen interest in
finding out about security topics for their own sake — a finding that resonates with reported correlations
between inquisitiveness and tool adoption [74], and continuous learning [72] — more research is needed to
systematically trace observational findings into the code.

Finally, the particular aim in this research was to enlarge understanding of security in “ordinary” software
development as a way to support engineers who are not security specialists. However, documenting what is
known about software development practices in security-critical software would also provide perspective on
professional software security attitudes and practices. It is possible that the climate within security-critical
environments is somehow better, and that developers always or generally feel empowered to direct security
activity. The findings presented in Section 4 and the framework presented in Section 5 lay the basis for
future work to test the claim made that responses are a distinct entity within software engineering that
includes security aspects, and to explore how attitudes and work practices in different kinds of development
environments align — or deviate — from one another.

8 CONCLUSION

In the workplace, developers engage with security in a number of ways. Security is a part of activities in
which developers are primarily users or administrators of systems that must remain secure. Developers
also take an active role in interpreting and enacting security policies for their companies and clients. This
research has identified that a developer responds to the security needs in these situations within common
dimensions of development practice. The response is influenced by the task that must be completed, local
problems that need to be solved, and a developer’s individual orientation toward the situation. Findings
indicate that a developer may have a preferred approach to solving security problems based on existing
knowledge or past experiences, but will tailor their response to meet the demands of companies and clients.

Developers comply with security policies because they perceive value in them. Compliance facilitates task
completion, is a way to cultivate interests, and “makes sense” — developers see the point in following policies

Security Responses in Software Development 27

set out by a company. They associate being secure with core values in the software engineering profession
to write “good software” and feel a sense of responsibility to carefully manage user data. However, this
research has shown that developers participate in a broader security climate made up of teams, departments,
companies, and clients. Decisions that have an impact on security within code are not always made by
developers or development teams but instead reflect the attitudes and priorities of companies and their clients.
This has an effect on how developers engage with security in practice, resulting in a range of behaviours
and activities that maintain socio-technical security alongside production. In recognising the ways in which
socio-technical security is maintained through behavioral responses, managers and teams can alter security
outcomes in their environments.

ACKNOWLEDGMENTS

The authors thank the professional developers and organizations that gave their time to this study and to
the reviewers, including James Noble, for their generous commentary. This work greatly benefitted from the
expertise and insight given by Charles Weir and Hannah Cooper, and was supported by the UK NCSC,
UKRI/EPSRC (EP/R013144/1, EP/T017465/1), and SFI (13/RC/2094_P2).

REFERENCES
[1] Yasemin Acar, Sascha Fahl, and Michelle L. Mazurek. 2016. You are not your developer, either: A research agenda for

usable security and privacy research beyond end users. In Cybersecurity Development (SecDev), IEEE. IEEE, 3–8.
[2] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L. Mazurek, and Sascha Fahl. 2017.

Developers Need Support, Too: A Survey of Security Advice for Software Developers. In Cybersecurity Development
(SecDev), 2017 IEEE. IEEE, 22–26.

[3] Anne Adams and Martina Angela Sasse. 1999. Users are not the enemy. Commun. ACM 42, 12 (1999), 40–46.
[4] Teresa M. Amabile and Steven J. Kramer. 2007. Inner work life: understanding the subtext of business performance.

Harvard Business Review 85, 5 (2007), 72–83, 144.
[5] Bob Anderson. 1997. Work , Ethnography and System Design. In The Encyclopedia of Microcomputers, A Kent and

J G Williams (Eds.). Vol. 20. Marcel Dekker, 159–183.
[6] Ross Anderson. 2008. Security engineering. John Wiley & Sons.
[7] Ross Anderson. 2020. Security engineering: a guide to building dependable distributed systems. John Wiley & Sons.
[8] Michael Angrosino. 2007. Analyzing Ethnographic Data. In Doing Ethnographic and Observational Research. SAGE

Publications Ltd, 67–76.
[9] Hala Assal and Sonia Chiasson. 2018. Security in the software development lifecycle. In Fourteenth Symposium on

Usable Privacy and Security (${$SOUPS$}$ 2018). 281–296.
[10] Ingolf Becker, Simon Parkin, and M Angela Sasse. 2017. Finding security champions in blends of organisational culture.

Proceedings of USEC 11 (2017).
[11] Kathrin Bednar, Sarah Spiekermann, and Marc Langheinrich. 2019. Engineering Privacy by Design: Are engineers ready

to live up to the challenge? The Information Society 35, 3 (2019), 122–142. Publisher: Taylor & Francis.
[12] Hal Berghel. 2017-12. Equifax and the Latest Round of Identity Theft Roulette. 50, 12 (2017-12), 72–76.
[13] Marcus Beyer, Sarah Ahmed, Katja Doerlemann, Simon Arnell, Simon Parkin, M. A. Sasse, and Neil Passingham. 2015.

Awareness is only the first step. A framework for progressive engagement of staff in cyber security, Hewlett Packard,
Business white paper (2015).

[14] Andrea J Bingham. 2021. How distributed leadership facilitates technology integration: A case study of “pilot teachers”.
Teachers College Record 123, 7 (2021), 1–34.

[15] CISA. 2021. National Cyber Awareness System: Weekly Bulletins. Cybersecurity & Infrastructure Security Agency.
https://us-cert.cisa.gov/ncas/bulletins

[16] Lizzie Coles-Kemp. 2018. Practising Creative Securities. Royal Hall University of London.
[17] Lizzie Coles-Kemp and René Rydhof Hansen. 2017. Walking the Line: The Everyday Security Ties that Bind. In Human

Aspects of Information Security, Privacy and Trust (Lecture Notes in Computer Science), Theo Tryfonas (Ed.).
Springer International Publishing, 464–480.

https://us-cert.cisa.gov/ncas/bulletins

28 Lopez, et al.

[18] Pieter Danhieux. 2018. Are Developers Your First Line of Security Risk or Defense? https://devops.com/are-
developers-your-first-line-of-security-risk-or-defense/

[19] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. 2008. Selecting empirical methods for
software engineering research. In Guide to advanced empirical software engineering. Springer, 285–311.

[20] Michael Eraut. 2004. Informal learning in the workplace. Studies in Continuing Education 26, 2 (July 2004), 247–273.
[21] Mark-Anthony Falzon. 2016. Multi-sited ethnography: Theory, praxis and locality in contemporary research. Routledge.
[22] David M. Fetterman. 2009. Ethnography: Step-by-step. Sage Publications.
[23] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael Backes, and Sascha Fahl.

2017. Stack overflow considered harmful? the impact of copy&paste on android application security. In 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 121–136.

[24] César França, F. Da Silva, and Helen Sharp. 2018. Motivation and Satisfaction of Software Engineers. IEEE Transactions
on Software Engineering (2018).

[25] Steven Furnell and Kerry-Lynn Thomson. 2009. From culture to disobedience: Recognising the varying user acceptance
of IT security. 2009, 2 (2009), 5–10. https://doi.org/10.1016/S1361-3723(09)70019-3

[26] Dieter Gollman. 2019. Authentication, Authorisation & Accountability Issue 1.0. In Cybok: The CyberSecurity Body of
Knowledge. The University of Bristol. https://www.cybok.org/knowledgebase/

[27] Matthew Green and Matthew Smith. 2016. Developers are not the enemy!: The need for usable security apis. IEEE
Security & Privacy 14, 5 (2016), 40–46.

[28] Irit Hadar, Tomer Hasson, Oshrat Ayalon, Eran Toch, Michael Birnhack, Sofia Sherman, and Arod Balissa. 2018. Privacy
by designers: software developers’ privacy mindset. Empirical Software Engineering 23, 1 (2018), 259–289.

[29] Martyn Hammersley and Paul Atkinson. 2019. Ethnography: Principles in practice. Routledge.
[30] Iacovos Kirlappos, Simon Parkin, and M. Angela Sasse. 2014. Learning from Shadow Security: Why understanding

non-compliance provides the basis for effective security. In Workshop on Usable Security.
[31] Tamara Lopez, Helen Sharp, Thein Tun, Arosha K. Bandara, Mark Levine, and Bashar Nuseibeh. 2019. Hopefully we

are mostly secure: views on secure code in professional practice. In Proceedings of the 12th International Workshop on
Cooperative and Human Aspects of Software Engineering. IEEE Press, 61–68.

[32] Tamara Lopez, Thein Tun, Arosha Bandara, Levine Mark, Bashar Nuseibeh, and Helen Sharp. 2019. An anatomy of
security conversations in Stack Overflow. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS). IEEE, 31–40.

[33] Tamara Lopez, Thein T. Tun, Arosha K. Bandara, Mark Levine, Bashar Nuseibeh, and Helen Sharp. 2019. Taking
the Middle Path: Learning About Security Through Online Social Interaction. IEEE Software 37, 1 (2019), 25–30.
Publisher: IEEE.

[34] George E. Marcus. 1995. Ethnography in/of the world system: The emergence of multi-sited ethnography. Annual
review of anthropology 24, 1 (1995), 95–117. Publisher: Annual Reviews 4139 El Camino Way, PO Box 10139, Palo
Alto, CA 94303-0139, USA.

[35] George E Marcus. 2012. Multi-sited ethnography: Five or six things I know about it now. In Multi-sited ethnography.
Routledge, 24–40.

[36] Michelle L Mazurek and Daniel Votipka. 2020. 4.2 Ecological validity and study design for empirical secure development
studies. Empirical Evaluation of Secure Development Processes (2020), 12.

[37] Microsoft. [n.d.]. Microsoft Security Development Lifecycle. Technical Report. https://www.microsoft.com/en-
us/securityengineering/sdl

[38] Azadeh Mokhberi and Konstantin Beznosov. 2021. SoK: Human, Organizational, and Technological Dimensions of
Developers’ Challenges in Engineering Secure Software. In European Symposium on Usable Security 2021. 59–75.

[39] S. Nadi, S. Krüger, M. Mezini, and E. Bodden. 2016. Jumping Through Hoops: Why do Java Developers Struggle with
Cryptography APIs?. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). 935–946.

[40] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz, Matthew Smith, Karoline Busse, Karoline
Busse, Dominik Wermke, Sabrina Amft, and Sascha Fahl. 2018. If you want, I can store the encrypted password. A
Password-Storage Field Study with Freelance Developers. In ACM CHI Conference on Human Factors in Computing
Systems. USENIX Association, 311–328.

[41] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej Dechand, and Matthew Smith. 2017.
Why do developers get password storage wrong? A qualitative usability study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 311–328.

[42] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin Cappos, and Yanyan Zhuang. 2014. It’s the
Psychology Stupid: How Heuristics Explain Software Vulnerabilities and How Priming Can Illuminate Developer’s Blind
Spots. In Proceedings of the 30th Annual Computer Security Applications Conference (New York, NY, USA) (ACSAC

’14). ACM, 296–305.

https://devops.com/are-developers-your-first-line-of-security-risk-or-defense/
https://devops.com/are-developers-your-first-line-of-security-risk-or-defense/
https://doi.org/10.1016/S1361-3723(09)70019-3
https://www.cybok.org/knowledgebase/
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl

Security Responses in Software Development 29

[43] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad, Donovan Ellis, Eliany Perez, Rahul
Bobhate, Lois A. DeLong, Justin Cappos, and Yuriy Brun. 2018. API Blindspots: Why Experienced Developers Write
Vulnerable Code. In Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018). 315–328.

[44] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende, Jay Ligatti, and Xinming Ou. 2020. An Ethnographic Understanding
of Software (In) Security and a Co-Creation Model to Improve Secure Software Development. In Sixteenth Symposium
on Usable Privacy and Security (${$SOUPS$}$ 2020). 205–220.

[45] Shari Lawrence Pfleeger, M. Angela Sasse, and Adrian Furnham. 2014. From weakest link to security hero: Transforming
staff security behavior. Journal of Homeland Security and Emergency Management 11, 4 (2014), 489–510.

[46] Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand Epp, and Katharina Kinder-Kurlanda. 2017. Can Security
Become a Routine?: A Study of Organizational Change in an Agile Software Development Group. In Proceedings of the
2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (Portland, Oregon, USA)
(CSCW ’17). ACM, 2489–2503.

[47] Clay Posey, Tom L. Roberts, Paul Benjamin Lowry, and Ross T. Hightower. 2014-07-01. Bridging the divide: A
qualitative comparison of information security thought patterns between information security professionals and ordinary
organizational insiders. Information & Management 51, 5 (2014-07-01), 551–567.

[48] Irum Rauf, Marian Petre, Thein Tun, Tamara Lopez, Paul Lunn, Dirk Van der Linden, John Towse, Helen Sharp, Mark
Levine, Awais Rashid, et al. 2021. The Case for Adaptive Security Interventions. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 1 (2021), 1–52.

[49] James Reason. 1990. Human error. Cambridge university press.
[50] Hugh Robinson and Helen Sharp. 2005. Organisational culture and XP: three case studies. In Agile Development

Conference (ADC’05). IEEE, 49–58.
[51] Hugh Robinson and Helen Sharp. 2009. The emergence of object-oriented technology: the role of community. Behaviour

& Information Technology 28, 3 (2009), 211–222. Publisher: Taylor & Francis.
[52] Colin Robson and Kieran McCartan. 2016. Real world research: a resource for users of social research methods in

applied settings. Wiley.
[53] Per Runeson and Martin Host. 2009. Guidelines for conducting and reporting case study research in software engineering.

Empirical Software Engineering 14 (2009), 131.
[54] M Angela Sasse and Awais Rashid. 2019. Human Factors Knowledge Area Issue 1.0. In Cybok: The CyberSecurity Body

of Knowledge. The University of Bristol. https://www.cybok.org/knowledgebase/
[55] Edgar H. Schein. 1996. Career anchors revisited: Implications for career development in the 21st century. The Academy

of Management Executive 10, 4 (1996), 80–88.
[56] Bruce Schneier. 2008. The Security Mindset - Schneier on Security. https://www.schneier.com/blog/archives/2008/

03/the_security_mi_1.html
[57] Helen Sharp, Nathan Baddoo, Sarah Beecham, Tracy Hall, and Hugh Robinson. 2009. Models of motivation in software

engineering. Information and software technology 51, 1 (2009), 219–233.
[58] H. Sharp, Y. Dittrich, and C. R. B. de Souza. 2016-08. The Role of Ethnographic Studies in Empirical Software

Engineering. IEEE Transactions on Software Engineering 42, 8 (2016-08), 786–804.
[59] H. Sharp, H. Robinson, and M. Woodman. 2000. Software engineering: community and culture. IEEE Software 17, 1

(2000), 40–47.
[60] Adam Shostack. 2014. Threat modeling: Designing for security. John Wiley & Sons.
[61] Mario Luis Small. 2009. How many cases do I need?’ On science and the logic of case selection in field-based research.

Ethnography 10, 1 (2009), 5–38.
[62] Graham M. Smith. 2005. Into Cerberus’ Lair: Bringing the Idea of Security to Light. The British Journal of Politics &

International Relations 7, 4 (2005), 485–507.
[63] Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. 2020. Why Can’t Johnny Fix Vulnerabilities: A

Usability Evaluation of Static Analysis Tools for Security. In Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020). 221–238.

[64] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t Trust The Locals: Investigating the
Prevalence of Persistent Client-Side Cross-Site Scripting in the Wild. (2019). Network and Distributed Systems Security
(NDSS) Symposium.

[65] Mohammad Tahaei and Kami Vaniea. 2019. A Survey on Developer-Centred Security. In 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW) (Stockholm, Sweden). IEEE, 129–138.

[66] Inger Anne Tøndel, Daniela Soares Cruzes, and Martin Gilje Jaatun. 2020. Using Situational and Narrative Analysis for
Investigating the Messiness of Software Security. In Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). 1–6.

https://www.cybok.org/knowledgebase/
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

30 Lopez, et al.

[67] Anwesh Tuladhar, Daniel Lende, Jay Ligatti, and Xinming Ou. 2021. An Analysis of the Role of Situated Learning
in Starting a Security Culture in a Software Company. In Seventeenth Symposium on Usable Privacy and Security
(SOUPS 2021). 617–632.

[68] Dirk van der Linden, Emma Williams, Joseph Hallett, and Awais Rashid. 2020. The impact of surface features on choice
of (in) secure answers by Stackoverflow readers. IEEE Transactions on Software Engineering (2020), 1–1. Publisher:
IEEE.

[69] Andrew van der Stock, Brian Glas, Neil Smithline, and Torsten Gigler. 2017. OWASP top 10-2017 the ten most critical
web application security risks. Technical Report. https://owasp.org/www-project-top-ten/2017/

[70] John Van Maanen. 2011. Tales of the field: On writing ethnography. University of Chicago Press.
[71] Charles Weir, Ingolf Becker, and James Blair, Lynne. 2021. A Passion for Security: Intervening to Help Software

Developers. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in
Practice. IEEE, 21–30.

[72] Charles Weir, Awais Rashid, and James Noble. 2016. How to improve the security skills of mobile app developers?
Comparing and contrasting expert views. In Twelfth Symposium on Usable Privacy and Security (SOUPS 2016).

[73] Etienne Wenger, Beverly Traynor, and Maarten de Laat. 2011. Promoting and assessing value creation in communities
and networks: a conceptual framework. Number 18. Ruud de Moor Centrum, Open University of the Netherlands, 1–56.

[74] Jim Witschey, Shundan Xiao, and Emerson Murphy-Hill. 2014. Technical and personal factors influencing developers’
adoption of security tools. In Proceedings of the 2014 ACM Workshop on Security Information Workers. 23–26.

[75] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social influences on secure development tool adoption:
why security tools spread. In Proceedings of the 17th ACM conference on Computer supported cooperative work &
social computing. ACM, 1095–1106.

A APPENDICES

A.1 Interview Guide

Questions were adapted from [17] and [62].
Now I want to ask a few questions about security within software engineering. There are no right or

wrong answers, I am just interested in gathering your impressions.
15. Does security come up often in your work? - What needs to be secured? Or Who?
16. What is doing the securing?
17. Why is [the subject] being secured?
18. Who (or what) is [the subject] being secured from?
Additional questions for those who spend time in security work
19. When did you start spending more time on security issues? - What caused this change?
20. How do you keep up with security technologies?
21. Do you feel you could/want to do more about security? - What kind of support would you need?
22. Do security measures get in your way? What do you do about it?

A.2 Security Work Episodes & Responses

Table 6 highlights a set of work episodes identified in our field studies through observation (O), in-
terviews (I) and at a Modelling Session (MS). Security areas corresponding to the CYBOK taxonomy
(https://www.cybok.org/) are noted in the field “Security Area”. The other fields indicate the nature of
the task; and who or what drives the security behaviour or enacts the policy. The description gives a brief
overview of the episode.

https://owasp.org/www-project-top-ten/2017/

Security Responses in Software Development 31

Table 6. Security Work Episodes

Ep Site
(Source)

Security Area Task Enacted
by

Description

EP1 Site A
(O)

Authorisation Use 3rd party
tool

Two participants configure SSH keys for an
instance of Git running in a newly created
virtual environment.

EP2 Site A
(I)

Authorisation Admin Lead Engi-
neer

Access to production servers is restricted to
lead engineers. The participant must assess
requests to access the production servers
and make the connection.

EP3 Site A
(I)

Authorisation Admin Engineers
at the
client site

Engineers at the client have given the par-
ticipant credentials to access to their pro-
duction servers for testing changes to code.

EP4 Site B
(MS)

Authorisation; Hard-
ware

Use Consultants
from dif-
ferent
companies

Consultant engineers trade passwords with
each other to gain access to password pro-
tected devices on the network using email
and chat.

EP5 Site B
(I)

Software Security;
Web & Mobile; Net-
work; Distributed
systems; Cryptogra-
phy; SSDL

Engineer Lead Engi-
neer

The participant described the details of a
past project in which he was able to engi-
neer security into a product from the very
beginning.

EP6 Site B
(MS)

Risk Anal. & Gover-
nance; SSDL

Engineer Security
Team

The security team audited a solution cre-
ated by a participant and found it did not
meet the company’s internal security com-
pliance requirements.

EP7 Site A
(O)

Law & Regulation;
Software Security

Engineer Pair of en-
gineers

Implementing logging for GDPR. No ex-
plicit talk about security implications of
the task.

EP8 Site A
(O)

Authorisation Use 3rd party
tool

A participant ran into problems when com-
mitting generated code to GIT. A second
engineer explained that the problem was
related to SSH_AUTH

EP9 Site B
(I)

SSDL Engineer Client A year-long greenfield development project
for a client. Security is said to be impor-
tant, but client presses for more time to be
given to features. It is key that the product
launches on time.

EP10 Site
B (I)

Network Security Admin Engineering
Team

A workaround was put in place opening
firewall ports to allow code to be propagated
from a local development environment to a
networked repository.

	Abstract
	1 Introduction
	2 Background
	2.1 Security Attitudes and Hindrances
	2.2 Security in Organizations
	2.3 The Social Side of Security

	3 Method
	3.1 Multi-sited Ethnography
	3.2 Data Collection
	3.3 Analysis

	4 Findings
	4.1 RQ1. Where can security be found in "ordinary" software development environments?
	4.2 RQ2. How do non-specialist developers engage with security in practice?

	5 Security Responses in Software Development
	5.1 Security Climate
	5.2 Workplace Factors
	5.3 Responses

	6 Limitations
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Appendices
	A.1 Interview Guide
	A.2 Security Work Episodes & Responses

